Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 174
Filtrar
1.
Biotechnol J ; 19(4): e2400078, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38651251

RESUMO

Due to their high-quality characteristics, Chinese hamster ovary (CHO) cells have become the most widely used and reliable host cells for the production of recombinant therapeutic proteins in the biomedical field. Previous studies have shown that the m6A reader YTHDF3, which contains the YTH domain, can affect a variety of biological processes by regulating the translation and stability of target mRNAs. This study investigates the effect of YTHDF3 on transgenic CHO cells. The results indicate that stable overexpression of YTHDF3 significantly enhances recombinant protein expression without affecting host cell growth. Transcriptome sequencing indicated that several genes, including translation initiation factor, translation extension factor, and ribosome assembly factor, were upregulated in CHO cells overexpressing YTHDF3. In addition, cycloheximide experiments confirmed that YTHDF3 enhanced transgene expression by promoting translation in CHO cells. In conclusion, the findings in this study provide a novel approach for mammalian cell engineering to increase protein productivity by regulating m6A.


Assuntos
Cricetulus , Biossíntese de Proteínas , Proteínas de Ligação a RNA , Proteínas Recombinantes , Animais , Células CHO , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Biossíntese de Proteínas/genética , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Cricetinae
2.
Int Immunopharmacol ; 133: 112066, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38615377

RESUMO

Acevaltrate is a natural product isolated from the roots of Valeriana glechomifolia F.G.Mey. (Valerianaceae) and has been shown to exhibit anti-cancer activity. However, the mechanism by which acevaltrate inhibits tumor growth is not fully understood. We here demonstrated the effect of acevaltrate on hypoxia-inducible factor-1α (HIF-1α) expression. Acevaltrate showed a potent inhibitory activity against HIF-1α induced by hypoxia in various cancer cells. This compound markedly decreased the hypoxia-induced accumulation of HIF-1α protein dose-dependently. Further analysis revealed that acevaltrate inhibited HIF-1α protein synthesis and promoted degradation of HIF-1α protein, without affecting the expression level of HIF-1α mRNA. Moreover, the phosphorylation levels of mammalian target of rapamycin (mTOR), ribosomal protein S6 kinase (p70S6K), and eIF4E binding protein-1 (4E-BP1) were significantly suppressed by acevaltrate. In addition, acevaltrate promoted apoptosis and inhibited proliferation, which was potentially mediated by suppression of HIF-1α. We also found that acevaltrate administration inhibited tumor growth in mouse xenograft model. Taken together, these results suggested that acevaltrate was a potent inhibitor of HIF-1α and provided a new insight into the mechanisms of acevaltrate against cancers.

3.
Heliyon ; 10(5): e26901, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38468921

RESUMO

The human cytomegalovirus major immediate early gene (CMV) promoter is currently the most preferred promoter for recombinant therapeutic proteins (RTPs) production in CHO cells. To enhance the production of RTPs, five synthetic enhancers including multiple transcription factor regulatory elements (TFREs) were evaluated to enhance recombinant protein level in transient and stably transfected CHO cells. Compared with the control, four elements can enhance the report genes expression under both two transfected states. Further, the function of these four enhancers on human serum albumin (HSA) were investigated. We found that the transient expression can increase by up to 1.5 times, and the stably expression can maximum increase by up to 2.14 times. The enhancement of transgene expression was caused by the boost of their corresponding mRNA levels. Transcriptomics analysis was performed and found that transcriptional activation and cell cycle regulation genes were involved. In conclusion, optimization of enhancers in the CMV promoter could increase the production yield of transgene in transfected CHO cells, which has significance for developing high-yield CHO cell expression system.

4.
Bioprocess Biosyst Eng ; 47(4): 557-565, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38416261

RESUMO

Transient gene expression system is an important tool for rapid production of recombinant proteins in Chinese hamster ovary (CHO) cells. However, their low productivity is the main hurdle to overcome. An effective approach through which to obtain high protein yield involves targeting transcriptional, post-transcriptional events (PTEs), and culture conditions. Here, we investigated the effects of protein disulfide isomerase (PDI) and spliced X-box binding protein 1 (XBP-1s) co-overexpression combined with mild hypothermia on the transient yields of recombinant proteins in CHO cells. The results showed that the gene of interest (GOI) and the PDI/XBP-1s helper vector at a co-transfection ratio of 10:1 could obviously increase transient expression level of recombinant protein in CHO cells. However, PDI/XBP-1s overexpression had no significance effect on the mRNA levels of the recombinant protein, suggesting that it targeted PTEs. Moreover, the increased production was due to the enhancing of cell specific productivity, not related to cell growth, viability, and cell cycle. In addition, combined PDI/XBP-1s co-overexpression and mild hypothermia could further improve Adalimumab expression, compared to the control/37 °C and PDI/XBP-1s/37 °C, the Adalimumab volume yield of PDI/XBP-1s/33 °C increased by 203% and 142%, respectively. Mild hypothermia resulted in 3.52- and 2.33-fold increase in the relative mRNA levels of PDI and XBP-1s, respectively. In conclusion, the combination of PDI/XBP-1s overexpression and culture temperature optimization can achieve higher transient expression of recombinant protein, which provides a synergetic strategy to improve transient production of recombinant protein in CHO cells.


Assuntos
Hipotermia , Fatores de Transcrição , Cricetinae , Animais , Células CHO , Cricetulus , Fatores de Transcrição/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Isomerases de Dissulfetos de Proteínas/genética , Adalimumab/genética , Hipotermia/genética , Proteínas Recombinantes , Transfecção , Transgenes , RNA Mensageiro
5.
Appl Microbiol Biotechnol ; 108(1): 182, 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38285115

RESUMO

Mammalian cell lines are frequently used as the preferred host cells for producing recombinant therapeutic proteins (RTPs) having post-translational modified modification similar to those observed in proteins produced by human cells. Nowadays, most RTPs approved for marketing are produced in Chinese hamster ovary (CHO) cells. Recombinant therapeutic antibodies are among the most important and promising RTPs for biomedical applications. One of the issues that occurs during development of RTPs is their degradation, which caused by a variety of factors and reducing quality of RTPs. RTP degradation is especially concerning as they could result in reduced biological functions (antibody-dependent cellular cytotoxicity and complement-dependent cytotoxicity) and generate potentially immunogenic species. Therefore, the mechanisms underlying RTP degradation and strategies for avoiding degradation have regained an interest from academia and industry. In this review, we outline recent progress in this field, with a focus on factors that cause degradation during RTP production and the development of strategies for overcoming RTP degradation. KEY POINTS: • The recombinant therapeutic protein degradation in CHO cell systems is reviewed. • Enzymatic factors and non-enzymatic methods influence recombinant therapeutic protein degradation. • Reducing the degradation can improve the quality of recombinant therapeutic proteins.


Assuntos
Apoptose , Indústrias , Animais , Cricetinae , Humanos , Células CHO , Cricetulus , Proteólise
6.
medRxiv ; 2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38293138

RESUMO

Neurodevelopmental proteasomopathies represent a distinctive category of neurodevelopmental disorders (NDD) characterized by genetic variations within the 26S proteasome, a protein complex governing eukaryotic cellular protein homeostasis. In our comprehensive study, we identified 23 unique variants in PSMC5 , which encodes the AAA-ATPase proteasome subunit PSMC5/Rpt6, causing syndromic NDD in 38 unrelated individuals. Overexpression of PSMC5 variants altered human hippocampal neuron morphology, while PSMC5 knockdown led to impaired reversal learning in flies and loss of excitatory synapses in rat hippocampal neurons. PSMC5 loss-of-function resulted in abnormal protein aggregation, profoundly impacting innate immune signaling, mitophagy rates, and lipid metabolism in affected individuals. Importantly, targeting key components of the integrated stress response, such as PKR and GCN2 kinases, ameliorated immune dysregulations in cells from affected individuals. These findings significantly advance our understanding of the molecular mechanisms underlying neurodevelopmental proteasomopathies, provide links to research in neurodegenerative diseases, and open up potential therapeutic avenues.

7.
Mol Ther Oncolytics ; 31: 100747, 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38046893

RESUMO

CD47 and its receptor signal regulatory protein α (SIRPα) act as a dominant antiphagocytic, "don't eat me" signal. Recent studies reveal CD24 as a novel target for cancer immunotherapy by macrophages in ovarian cancer and breast cancer. However, whether simultaneous blockade of CD47 and CD24 by a bispecific antibody may result in a potential synergy is still unclear. In the present study, we for the first time designed and developed a bispecific antibody fusion protein, PPAB001 for cotargeting CD47 and CD24. Data demonstrate that simultaneous blockade of CD47/SIRPα and CD24/Siglec-10 signaling by PPAB001 potently promoted macrophage phagocytosis of tumor cells. Compared to single CD47 or CD24 targeting agents, PPAB001 was more effective in inhibiting tumor growth in both mouse 4T-1 syngeneic and human SK-OV-3 xenogeneic tumor models. Mechanistically, we found that PPAB001 therapy markedly increased the proportion of tumor-infiltrating macrophages and upregulated interleukin-6 and tumor necrosis factor-α levels that were representative macrophage inflammatory cytokines. Notably, an increased ratio of M1/M2 in tumor-infiltrating macrophages in the mice treated with PPAB001 suggested that the dual blockade may promote the transition of macrophages from M2 to M1. Taken together, our data supported the development of PPAB001 as a novel immunotherapeutic in the treatment of CD47 and CD24 double-positive cancers.

8.
Toxics ; 11(11)2023 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-37999544

RESUMO

BACKGROUND: In China, the increasing concentration of ozone (O3) has emerged as a significant air pollution issue, leading to adverse effects on public health, particularly the respiratory system. Despite the progress made in managing air pollution in China, it is crucial to address the problem of environmental O3 pollution at present. METHODS: The connection between O3 exposure and respiratory mortality in Shenyang, China, from 2014 to 2018 was analyzed by a time-series generalized additive regression model (GAM) with quasi-Poisson regression. Additionally, the potential combined effects of fine particulate matter (PM2.5) and O3 were investigated using the synergy index (SI). RESULTS: Our findings indicate that each 10 µg/m3 increase in O3 at lag 2 days was associated with a maximum relative risk (RR) of 1.0150 (95% CI: 1.0098-1.0202) for respiratory mortality in the total population. For individuals aged ≥55 years, unmarried individuals, those engaged in indoor occupations, and those with low educational attainment, each 10 µg/m3 increase in O3 at lag 07 days was linked to RR values of 1.0301 (95% CI: 1.0187-1.0417), 1.0437 (95% CI: 1.0266-1.0610), 1.0317 (95% CI: 1.0186-1.0450), and 1.0346 (95% CI: 1.0222-1.0471), respectively. Importantly, we discovered a synergistic effect of PM2.5 and O3, resulting in an SI of 2.372 on the occurrence of respiratory mortality. CONCLUSIONS: This study confirmed a positive association between O3 exposure and respiratory mortality. Furthermore, it highlighted the interaction between O3 and PM2.5 in exacerbating respiratory deaths.

9.
3 Biotech ; 13(11): 354, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37810190

RESUMO

We have previously developed a non-viral episomal vector based on matrix attachment region (MAR) that can facilitate plasmid replication episomally in mammal cells. In this study, we have focused on the development of an alternative tissue specific episomal vector by incorporating into cis-acting elements. We found that AAT promoter demonstrated the highest eGFP expression level in HepG2, Huh-7 and HL-7702 hepatic cells. Furthermore, hCMV enhancer when combined with AAT promoter significantly improved the eGFP expression level in the transfected HepG2 cells. The mean fluorescence intensity of eGFP in hCMV2 group was 1.33 fold, which was higher than that of the control (p < 0.01), followed by the hCMV1 group (1.21 fold). In addition, the percentages of eGFP-expressing cells in hCMV1 and hCMV2 groups were observed to be 49.3% and 57.2%, which were significantly higher than that of the enhancer-devoid control vector (44.3%) (p < 0.05). Moreover, the eGFP protein were up to 3.5 fold and 5.1 fold (p < 0.05), respectively. This observation could be related with the activities of some specific transcription factors (TFs) during the transcriptional process, such as SRF, REL and CREB1. The composite CMV/AAT promoter can be thus used for efficient transgene expression of MAR-based episomal vector in liver cells and as a potential gene transfer tools for the management of liver diseases. Supplementary Information: The online version contains supplementary material available at 10.1007/s13205-023-03774-x.

10.
Front Psychiatry ; 14: 1205204, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37671287

RESUMO

Serine/threonine protein kinases are involved in axon formation and neuronal polarization and have recently been implicated in autism spectrum disorder (ASD) and neurodevelopmental disorders (NDD). Here, we focus on BRSK2, which encodes brain-specific serine/threonine protein kinase 2. Although previous studies have reported 19 unrelated patients with BRSK2 pathogenic variation, only 15 of 19 patients have detailed clinical data. Therefore, more case reports are needed to enrich the phenotype associated with BRSK2 mutations. In this study, we report a novel de novo frameshift variant (c.442del, p.L148Cfs*39) identified by exome sequencing in a 16 year-old Chinese boy with ASD. The proband presented with attention-deficit, auditory hallucinations, limb tremor, and abnormal brain electrical activity mapping. This study expands the phenotypic spectrum of BRSK2-related cases and reveals the highly variable severity of disorders associated with BRSK2.

11.
Biomater Sci ; 11(20): 6848-6861, 2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37646188

RESUMO

Abdominal adhesions, a commonly observed complication of abdominal surgery, have a high incidence and adversely affect patients' physical and mental health. The primary causes of abdominal adhesions are intraoperative trauma, acute inflammatory response, bleeding, and foreign body infection. Because most current treatment approaches for abdominal adhesions are limited, improved and novel postoperative anti-adhesion regimens are urgently needed. In this study, we developed calcium polyphenol network (CaPN) microspheres based on the self-assembly of the natural triphenolic compound gallic acid and Ca2+ in solution. The physicochemical properties of CaPNs, including their hemostatic, antibacterial, antioxidant, and anti-inflammatory activities, were investigated in vitro. Bleeding and cecal-abdominal wall adhesion models were established to observe the hemostatic activity of CaPNs and their preventive effect on postoperative abdominal wall adhesion in vivo. The results showed that CaPNs significantly reduced inflammation, oxidative stress, fibrosis, and abdominal adhesion formation and had good hemostatic and antibacterial properties. Our findings suggest a novel strategy for the prevention of postoperative adhesions.


Assuntos
Cálcio , Hemostáticos , Humanos , Polifenóis/farmacologia , Polifenóis/uso terapêutico , Aderências Teciduais/prevenção & controle , Antibacterianos/farmacologia
12.
Curr Biol ; 33(19): 4037-4051.e5, 2023 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-37643619

RESUMO

The adaptation of Tibetans to high-altitude environments has been studied extensively. However, the direct assessment of evolutionary adaptation, i.e., the reproductive fitness of Tibetans and its genetic basis, remains elusive. Here, we conduct systematic phenotyping and genome-wide association analysis of 2,252 mother-newborn pairs of indigenous Tibetans, covering 12 reproductive traits and 76 maternal physiological traits. Compared with the lowland immigrants living at high altitudes, indigenous Tibetans show better reproductive outcomes, reflected by their lower abortion rate, higher birth weight, and better fetal development. The results of genome-wide association analyses indicate a polygenic adaptation of reproduction in Tibetans, attributed to the genomic backgrounds of both the mothers and the newborns. Furthermore, the EPAS1-edited mice display higher reproductive fitness under chronic hypoxia, mirroring the situation in Tibetans. Collectively, these results shed new light on the phenotypic pattern and the genetic mechanism of human reproductive fitness in extreme environments.

13.
Artigo em Inglês | MEDLINE | ID: mdl-37594091

RESUMO

Chinese hamster ovary cells are the main expression system for recombinant therapeutic proteins. During the production of these proteins, certain host cell proteins are secreted, broken down, and released by host cells in the culture along with the proteins of interest. These host cell proteins are often difficult to remove during the downstream purification process, and thus affect the quality, safety, and effectiveness of recombinant protein biopharmaceutical products and increase the production cost of recombinant therapeutic proteins. Therefore, host cell protein production must be reduced as much as possible during the production process and eliminated during purification. This article reviews the harm caused by host cell proteins in the production of recombinant protein drugs using Chinese hamster ovary cell, factors affecting host cell proteins, the monitoring and identification of these proteins, and methods to reduce their type and quantity in the final product.

14.
Biotechnol J ; 18(12): e2200643, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37551822

RESUMO

Previous work has shown that the EF-1α promoter of episomal vectors maintains high-level transgene expression in stably transfected Chinese hamster ovary (CHO) cells. However, the transgene expression levels need to be further increased. Here, we first incorporated matrix attachment regions (MARs), ubiquitous chromatin opening element (UCOE), stabilizing anti repressor elements 40 (STAR 40) elements into episomal vector at different sites and orientations, and systemically assessed their effects on transgene expression in transfected CHO-K1 cells. Results showed that enhanced green fluorescent protein (eGFP) expression levels increased remarkably when MAR X-29 was inserted upstream of the promoter, followed by the insertion of MAR1 downstream of the poly A, and the orientation had no significant effect. Moreover, MAR X-29 combined with human cytomegalovirus intron (hCMVI) yielded the highest transgene expression levels (4.52-fold). Transgene expression levels were not exclusively dependent on transgene copy numbers and were not related to the mRNA expression level. In addition, vector with MAR X-29+hCMVI can induce herpes simplex virus thymidine kinase (HSV-TK) protein expression, and the HSV-TK protein showed a cell-killing effect and an obvious bystander effect on HCT116 cells. In conclusion, the combination of MAR X-29 and hCMV intron can achieve high efficiency transgene expression mediated by episomal vectors in CHO-K1 cells.


Assuntos
Vetores Genéticos , Regiões de Interação com a Matriz , Cricetinae , Animais , Humanos , Cricetulus , Transfecção , Células CHO , Íntrons/genética , Transgenes/genética , Regiões de Interação com a Matriz/genética , Vetores Genéticos/genética
15.
Urol Int ; 107(8): 819-822, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37393904

RESUMO

Succinate dehydrogenase (SDH)-deficient renal cell carcinoma (RCC) is a new subtype of RCC included in the 2016 edition of the WHO classification in RCC. SDH-defective RCC accounts for 0.05-0.2%, and preoperative diagnosis is difficult. We report a severe adherent RCC of inferior vena cava that underwent open radical nephrectomy after preoperative renal artery embolization. Postoperative histopathological examination diagnosed SDH-defective RCC; the clinicopathological stage was pT2b. After 10 months of follow-up, the patient had no evidence of disease recurrence. For patients with large RCC, interventional embolization can be selected to reduce intraoperative bleeding and blood transfusion, and it is recommended to complete interventional surgery within 3-4 h before surgery. SDH-deficient RCC is difficult to distinguish from other renal tumors in imaging, so immunohistochemical examination of SDHB is recommended for young and middle-aged patients, especially those under 45.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Pessoa de Meia-Idade , Humanos , Carcinoma de Células Renais/cirurgia , Succinato Desidrogenase/genética , Recidiva Local de Neoplasia/patologia , Neoplasias Renais/cirurgia , Rim/patologia , Nefrectomia/métodos , Veia Cava Inferior/patologia
16.
Autism Res ; 16(8): 1488-1500, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37497568

RESUMO

Likely gene-disrupting (LGD) variants in DYRK1A are causative of DYRK1A syndrome and associated with autism spectrum disorder (ASD) and intellectual disability (ID). While many individuals with DYRK1A syndrome are diagnosed with ASD, they may present with a unique profile of ASD traits. We present a comprehensive characterization of the ASD profile in children and young adults with LGDs in DYRK1A. Individuals with LGD variants in DYRK1A (n = 29) were compared to children who had ASD with no known genetic cause, either with low nonverbal IQ (n = 14) or average or above nonverbal IQ (n = 41). ASD was assessed using the ADOS-2, ADI-R, SRS-2, SCQ, and RBS-R. Quantitative score comparisons were conducted, as were qualitative analyses of clinicians' behavioral observations. Diagnosis of ASD was confirmed in 85% and ID was confirmed in 89% of participants with DYRK1A syndrome. Individuals with DYRK1A syndrome showed broadly similar social communication behaviors to children with idiopathic ASD and below-average nonverbal IQ, with specific challenges noted in social reciprocity and nonverbal communication. Children with DYRK1A syndrome also showed high rates of sensory-seeking behaviors. Phenotypic characterization of individuals with DYRK1A syndrome may provide additional information on mechanisms contributing to co-occurring ASD and ID and contribute to the identification of genetic predictors of specific ASD traits.


Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Deficiência Intelectual , Humanos , Transtorno do Espectro Autista/complicações , Transtorno Autístico/genética , Transtorno Autístico/complicações , Deficiência Intelectual/epidemiologia , Deficiência Intelectual/genética , Deficiência Intelectual/complicações , Fenótipo , Comportamento Social
17.
Front Oncol ; 13: 1139025, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37361570

RESUMO

Background: Randomized controlled trials (RCTs) testing the combination therapy of transarterial chemoembolization (TACE) plus multikinase inhibitor (MKI) in patients with unresectable hepatocellular carcinoma (HCC) have yielded inconsistent results. Methods: In this work, a systematic review and meta-analysis was performed to compare the TACE+MKI combination therapy versus TACE monotherapy in HCC patients with time to progression (TTP) adopted as primary outcome. Results: A total of 10 RCTs comprising 2837 patients receiving combination therapy (TACE plus sorafenib, brivanib, orantinib or apatinib) were included. TACE+MKI significantly prolonged TTP (hazard ratio [HR] 0.74, 95% CI 0.62-0.89, p=0.001) versus TACE monotherapy. Subgroup analysis suggested MKI administration before TACE might be preferable to post-TACE MKI for TTP. TACE+MKI also increased objective response rate (ORR) (risk ratio [RR] 1.17, 95% CI 1.03-1.32, p=0.01), but failed to improve overall survival (OS) (HR 0.98, 95% CI 0.86-1.13, p=0.82) and progression-free survival (PFS) (HR 0.75, 95% CI 0.50-1.12, p=0.16). The incidence of any adverse event (AE) did not significantly differ between TACE+MKI and TACE groups (RR 1.17, 95% CI 0.96-1.42, p=0.01), while serious AEs showed significant difference (RR 1.41, 95% CI 1.26-1.59, p<0.0001). Nevertheless, these AEs showing significant difference were mainly associated with MKI toxicities rather than TACE. Conclusions: TACE+MKI combination therapy improved TTP and ORR but not OS and PFS in patients with unresectable HCC. Further high-quality trials are needed to verify these clinical benefits, and our findings could be very informative for future trial design.

18.
Sci Transl Med ; 15(698): eabo3189, 2023 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-37256937

RESUMO

A critical step in preserving protein homeostasis is the recognition, binding, unfolding, and translocation of protein substrates by six AAA-ATPase proteasome subunits (ATPase-associated with various cellular activities) termed PSMC1-6, which are required for degradation of proteins by 26S proteasomes. Here, we identified 15 de novo missense variants in the PSMC3 gene encoding the AAA-ATPase proteasome subunit PSMC3/Rpt5 in 23 unrelated heterozygous patients with an autosomal dominant form of neurodevelopmental delay and intellectual disability. Expression of PSMC3 variants in mouse neuronal cultures led to altered dendrite development, and deletion of the PSMC3 fly ortholog Rpt5 impaired reversal learning capabilities in fruit flies. Structural modeling as well as proteomic and transcriptomic analyses of T cells derived from patients with PSMC3 variants implicated the PSMC3 variants in proteasome dysfunction through disruption of substrate translocation, induction of proteotoxic stress, and alterations in proteins controlling developmental and innate immune programs. The proteostatic perturbations in T cells from patients with PSMC3 variants correlated with a dysregulation in type I interferon (IFN) signaling in these T cells, which could be blocked by inhibition of the intracellular stress sensor protein kinase R (PKR). These results suggest that proteotoxic stress activated PKR in patient-derived T cells, resulting in a type I IFN response. The potential relationship among proteosome dysfunction, type I IFN production, and neurodevelopment suggests new directions in our understanding of pathogenesis in some neurodevelopmental disorders.


Assuntos
Interferon Tipo I , Complexo de Endopeptidases do Proteassoma , Animais , Humanos , Camundongos , Adenosina Trifosfatases/genética , Drosophila melanogaster , Expressão Gênica , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteômica
19.
Biol Psychiatry ; 94(10): 769-779, 2023 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-36924980

RESUMO

BACKGROUND: Autism spectrum disorder is characterized by deficits in social communication and restricted or repetitive behaviors. Due to the extremely high genetic and phenotypic heterogeneity, it is critical to pinpoint the genetic factors for understanding the pathology of these disorders. METHODS: We analyzed the exomes generated by the SPARK (Simons Powering Autism Research) project and performed a meta-analysis with previous data. We then generated 1 zebrafish knockout model and 3 mouse knockout models to examine the function of GIGYF1 in neurodevelopment and behavior. Finally, we performed whole tissue and single-nucleus transcriptome analysis to explore the molecular and cellular function of GIGYF1. RESULTS: GIGYF1 variants are significantly associated with various neurodevelopmental disorder phenotypes, including autism, global developmental delay, intellectual disability, and sleep disturbance. Loss of GIGYF1 causes similar behavioral effects in zebrafish and mice, including elevated levels of anxiety and reduced social engagement, which is reminiscent of the behavioral deficits in human patients carrying GIGYF1 variants. Moreover, excitatory neuron-specific Gigyf1 knockout mice recapitulate the increased repetitive behaviors and impaired social memory, suggesting a crucial role of Gigyf1 in excitatory neurons, which correlates with the observations in single-nucleus RNA sequencing. We also identified a series of downstream target genes of GIGYF1 that affect many aspects of the nervous system, especially synaptic transmission. CONCLUSIONS: De novo variants of GIGYF1 are associated with neurodevelopmental disorders, including autism spectrum disorder. GIGYF1 is involved in neurodevelopment and animal behavior, potentially through regulating hippocampal CA2 neuronal numbers and disturbing synaptic transmission.


Assuntos
Transtorno do Espectro Autista , Proteínas de Transporte , Animais , Humanos , Camundongos , Transtorno do Espectro Autista/genética , Transtorno Autístico/genética , Comportamento Animal/fisiologia , Proteínas de Transporte/genética , Modelos Animais de Doenças , Transtornos da Memória/genética , Camundongos Knockout/genética , Peixe-Zebra/genética
20.
Appl Microbiol Biotechnol ; 107(9): 2771-2781, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36971794

RESUMO

Chinese hamster ovary (CHO) cells can produce proteins with complex structures and post-translational modifications which are similar to human-derived cells, and they have been the ideal host cells for the production of recombinant therapy proteins (RTPs). Nearly 70% of approved RTPs are produced by CHO cells. In recent years, a series of measures have been developed to increase the expression of RTPs to achieve the lower production cost during the process of large-scale industrial production of recombinant protein in CHO cells. Among of them, the addition of small molecule additives in the culture medium can improve the expression and production efficiency of recombinant proteins, and has become an effective and simple method. In this paper, the characteristics of CHO cells, the effect and mechanism of small molecule additives are reviewed. KEY POINTS: • Small molecular additives on the expression of RTPs in CHO cells are reviewed • Small molecular additives improve the yield of RTPs • Small molecular additives provide methods for the optimization of serum-free medium.


Assuntos
Processamento de Proteína Pós-Traducional , Cricetinae , Animais , Humanos , Cricetulus , Células CHO , Proteínas Recombinantes/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...